Complete Streets in Large Urban Counties

Planners and Engineers Collaborating in Cuyahoga County

2014 Akron Planning & Zoning Workshop
Friday, May 16, 2014
In a nutshell, complete streets are...

...roadways designed and operated to **safely and comfortably** accommodate all users of all ages and abilities, including cyclists, pedestrians, transit riders, elderly, delivery and service personnel, and emergency responders; and to accommodate and slow **storm water runoff** as part of a comprehensive storm water management system.
Agenda

1. Background of Toolkit
2. Benefits and Challenges of Complete Streets
3. Planning and Scoping a Road Project
4. Samples of Complete Streets Typology
5. Design Elements
6. Steps to Implementation
1. Background of Toolkit
Cuyahoga County Initiatives

• Regional Collaboration
 ▫ County Health Alliance
 ▫ CountyStat
• Economic Development
• Public Works
• Planning Commission
Timing

Jan 2013: CCPC received Smart Growth America grant
May 2013: SGA Technical Assistance Workshop
Oct 2013: CCPC and DPW collaborate on drafting toolkit
Feb 2014: First draft toolkit complete
Mar 2014: Fine tuning of draft
May 2014: Begin Outreach
Why a toolkit?

- 59 communities
- Different levels of
 - Commitment
 - Interest in complete streets
- County can legally provide
 - Advocacy for benefits of complete streets
 - Technical assistance with plans and policies
 - Improvements to County roads if approached by community

Thus toolkit:
- Provides options for different needs and starting points
- Offers starting point for conversation between communities and county
Principles of toolkit

- Easy to read/ lots of graphics
- Targeted to communities with different levels of commitment

- Community not sure about it: benefits and challenges
- Community eager to implement: implementation chapter
- Community with specific project: design guidelines

- Primary audience: planners, engineers, elected officials, advocates
- Each chapter able to stand alone for future updates
Collaboration of Planning and Public Works/Engineering

- Why collaborate?
 - Find efficiencies and improve services
 - Land use and transportation go together
 - Maximize resources through short- and long-term planning

- How to collaborate?
 - Develop and coordinate outline based on best practices
 - Assign chapters for draft document
 - Hold frequent monthly meetings to provide feedback on current drafts (3rd iteration of full toolkit)

- Benefits of collaboration?
 - Ability to address broad-based audience
 - Cover complexity of issue to make streets safe for all users
 - Ensure comprehensiveness of content
2. Benefits and Challenges

- Why invest in complete streets?
- Right of way challenges
- Cost concerns
- Too far down the road?
2. Benefits and Challenges of Complete Streets

Why invest in complete streets?

Quality of Life

- Between 2001 and 2009: America's 16-34 year olds were driving less and walking, bicycling and taking transit more.
- By 2025, nearly 1 in 5 Americans will be 65 or older.
- 56.7 million Americans (18.7%) have some type of disability.

Economic Benefits

- In Cuyahoga County, about 14% of households do not own a car.
- Americans spent an average of 18 cents of every dollar on transportation.
- 11% higher home value for every half mile closer to trail.
- The Healthline helped spur $4.3 billion in development projects in the corridor.

Active Living

- Approximately 40% of all trips are less than two miles in length— which represents a 30-minute walk.
- 17% of children aged 2 to 19 are obese. The prevalence of obesity among American youth has tripled since 1980.

Environment

- Motor vehicle emissions represent 31% of total carbon dioxide, 81% of carbon monoxide, and 49% of nitrogen oxides.
- 4,500 million gallons of combined sewer overflow were discharged into Lake Erie in Northeast Ohio (that equals roughly 7,000 Olympic sized swimming pools). Green infrastructure can significantly reduce that number and ensure clean beaches year around.

Safety

- Well-designed bicycle-specific infrastructure tends to reduce injury and crash risk by about 50%.
- More than 40% of pedestrian fatalities occur where there is no available crosswalk.
Right of way challenges

Road Capacities need for 40 vehicles, 40 transit riders and 40 cyclists.

Des Moines, Iowa (Bennett, 2010)
Cost Concerns

Based on current Northeast Ohio price estimates
Too far down the road?

Include complete streets considerations early on:

Planning, and Scoping
- $ less expensive/cost savings possible
- Meaningful and extensive integration of complete streets elements possible

Leverage STP dollars
- Complete streets can be built for the same or less costs if complete streets principles are considered early on

Preliminary Engineering and Design
- $$$ higher costs
- Minor improvements for all users of the road possible

Final Design
- Projects that are too far down the road
3. Planning and Scoping a Road Project
Example
Different Streets in Cleveland Heights

Land Uses
Connectivity (Network)
Priorities
Design Elements
3. Planning and Scoping

Step 1: Analyze existing and future transportation context

- **Development Patterns**
 - Commercial, Retail, Office
 - Business District
 - Neighborhood Center/Old Main Street
 - Lifestyle Center
 - Strip mall, big box stores, indoor malls

- **Residential**
 - Single-Family Residential
 - Multi-Family Residential

- **Industrial**
 - Others: Institutional, Schools, Parks

- **Semi-rural**

Utilize land use and zoning maps to determine development patterns.

See Chapter 2.1 and Chapter 3

Step 2: Determine desired mode priorities

- **Priorities for Public Investment**

- **Roadway Dimensions**

- **Design Elements**

Step 3: Review existing roadway conditions

- Pavement Width > 70 feet Large Street
- Pavement Width 48-69 feet Medium Street
- Pavement Width 30-47 feet Small Street
- Pavement Width < 30 feet Very Small Street

Step 4: Select complete streets elements

- Road or Lane Diet
- Pedestrian Facilities
- Transit Facilities
- Bicycle Facilities
- Water Management and Landscaping
- Parking Management

See Chapter 3 for suggested priorities by development patterns and street network.

See Chapter 3 for pavement width by development pattern.

See Chapter 3 and Chapter 4 for design element options.

Utilize RTA, Metroparks, and NOACA maps to identify regional priorities.

See Chapter 2.2 and Chapter 3

See Chapter 2.3
Part of Step 1: Consider the Street Network

Different Patterns throughout the County

Consider Parallel Routes
3. Planning and Scoping

Step 1: Analyze existing and future transportation context

- **A** Development Patterns
 - Commercial, Retail, Office
 - Business District
 - Neighborhood Center/Old Main Street
 - Lifestyle Center
 - Strip mall, big box stores, indoor malls

- **B** Street Network
 - Neighborhood/Residential
 - Single-Family Residential
 - Multi-Family Residential
 - Industrial
 - Semi-rural
 - Others: Institutional, Schools, Parks

- **C** Type of Road Project
 - Could the road project provide improved multi-modal access to:
 - Greenways/Park
 - Regional Bicycle Network
 - Transit
 - Stores, libraries, jobs and other destinations within 1 mile radius
 - Schools
 - Other

- **D** Priorities for Public Investment
 - The type of road project shapes the design elements possible
 - Maintenance
 - Resurfacing, Restoration, Rehabilitation
 - Reconstruction
 - New Construction

Step 2: Determine desired mode priorities

- **E** Roadway Dimensions
 - Pavement Width > 70 feet
 - Large Street
 - Pavement Width 48-69 feet
 - Medium Street
 - Pavement Width 30-47 feet
 - Small Street
 - Pavement Width < 30 feet
 - Very Small Street

- **F** Design Elements
 - Road or Lane Diet
 - Pedestrian Facilities
 - Transit Facilities
 - Bicycle Facilities
 - Water Management and Landscaping
 - Parking Management

See Chapter 3 for suggested priorities by development pattern
See Chapter 3 and Chapter 4 for design element options
Step 2:
Impact of Mode Priorities on Design Choices

80 feet ROW – Business As Usual

80 feet ROW – Transit Priority

80 feet ROW – Pedestrian Priority

80 feet ROW – Mode Balance

80 feet ROW – Pedestrian and Bicycle Priority
3. Planning and Scoping

Step 1: Analyze existing and future transportation context

- **A** Development Patterns
 - Commercial, Retail, Office
 - Business District
 - Neighborhood Center/Old Main Street
 - Lifestyle Center
 - Strip mall, big box stores, indoor malls
 - Neighborhood/Residential
 - Single-Family Residential
 - Multi-Family Residential
 - Industrial
 - Semi-rural
 - Others: Institutional, Schools, Parks
 - Utilize land use and zoning maps to determine development patterns
 - See Chapter 2.1 and Chapter 3

- **B** Street Network
 - Could the road project provide improved multi-modal access to
 - Greenways/Park
 - Regional Bicycle Network
 - Transit
 - Stores, libraries, jobs and other destinations within 1 mile radius
 - Schools
 - Other
 - Utilize RTA, Metroparks, and NOACA maps to identify regional priorities
 - See Chapter 2.2 and Chapter 3

- **C** Type of Road Project
 - The type of road project shapes the design elements possible
 - Maintenance
 - Resurfacing, Restoration, Rehabilitation
 - Reconstruction
 - New Construction
 - See Chapter 2.3

Step 2: Determine desired mode priorities

- **D** Priorities for Public Investment
 - See Chapter 3 for suggested priorities by development patterns and street network

Step 3: Review existing roadway conditions

- **E** Roadway Dimensions
 - Pavement Width > 70 feet Large Street
 - Pavement Width 48-69 feet Medium Street
 - Pavement Width 30-47 feet Small Street
 - Pavement Width < 30 feet Very Small Street
 - See Chapter 3 for pavement width by development pattern

Step 4: Select complete streets elements

- **F** Design Elements
 - See Chapter 3 and Chapter 4 for design element options
 - See Chapter 3 for pavement width by development pattern
 - Road or Lane Diet
 - Pedestrian Facilities
 - Transit Facilities
 - Bicycle Facilities
 - Water Management and Landscaping
 - Parking Management

Covered in typology
4. Complete Streets Typology
Overview of full County typology

<table>
<thead>
<tr>
<th>Land Use Based</th>
<th>Network Based</th>
<th>Roadway Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Commuter</td>
<td>Large</td>
</tr>
<tr>
<td>Industrial</td>
<td>Transit</td>
<td>Medium</td>
</tr>
<tr>
<td>Residential</td>
<td>Boulevard</td>
<td>Small</td>
</tr>
<tr>
<td>Semi-rural</td>
<td>Access/ Alleys</td>
<td>Very Small</td>
</tr>
<tr>
<td></td>
<td>Bridges</td>
<td></td>
</tr>
</tbody>
</table>
Example applied City of Cleveland typology
Suggested Design Elements for Medium Commercial Street

<table>
<thead>
<tr>
<th>Right of Way Considerations (Section 4.1)</th>
<th>Pedestrian Facilities (Section 4.2)</th>
<th>Transit Facilities (Section 4.3)</th>
<th>Bicycle Facilities (Section 4.4)</th>
<th>Landscaping and Storm water (Section 4.5)</th>
<th>Parking Management (Section 4.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Road Diet</td>
<td>- Sidewalk</td>
<td>- Transit center</td>
<td>- Bike Lanes</td>
<td>- Bioretention cells</td>
<td>- Metered on street</td>
</tr>
<tr>
<td>- Lane Diet</td>
<td>- Sidewalk furniture</td>
<td>- Furniture at stops</td>
<td>- Painted Bike Boxes</td>
<td>- Permeable pavers</td>
<td>- Valet parking</td>
</tr>
<tr>
<td>- Traffic Calming</td>
<td>- Signalized Crosswalks</td>
<td>- Real-time information</td>
<td>- Bicycle Parking</td>
<td>- Tree boxes</td>
<td>- Idle engine restrictions</td>
</tr>
<tr>
<td>- One Way Traffic</td>
<td>- Pedestrian signals</td>
<td>- Smart-pay systems</td>
<td>- Floating Bike Lanes</td>
<td>- Vegetated biofilter</td>
<td>- Parallel Parking</td>
</tr>
<tr>
<td>- Weekend Driving Restrictions</td>
<td>- Chicanes</td>
<td>- ADA access</td>
<td>- Bike signals</td>
<td>- Green parking</td>
<td>- Driver’s side door buffer</td>
</tr>
<tr>
<td>- Street lighting</td>
<td>- Scramble Phase</td>
<td></td>
<td>- Cycle Track</td>
<td>- Vegetated Roofs</td>
<td></td>
</tr>
<tr>
<td>- Speed reduction</td>
<td>- Winter maintenance</td>
<td></td>
<td></td>
<td>- Stormwater planters to structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Intersection treatments:</td>
<td></td>
<td></td>
<td>- on-street parking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>narrow and raised crosswalks at</td>
<td></td>
<td></td>
<td>- Rain gardens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>intersections</td>
<td></td>
<td></td>
<td>- Street Furniture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pedestrian scaled lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Medium Commuter Street

Suggested Design Elements for Medium Commuter Street

<table>
<thead>
<tr>
<th>Right of Way Considerations (Section 4.1)</th>
<th>Pedestrian Facilities (Section 4.2)</th>
<th>Transit Facilities (Section 4.3)</th>
<th>Bicycle Facilities (Section 4.4)</th>
<th>Landscaping and Storm water (Section 4.5)</th>
<th>Parking Management (Section 4.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Alternate routes</td>
<td>- Sidewalk width</td>
<td>- Furniture at stops</td>
<td>- Bike route signage</td>
<td>- Vegetated biofilter</td>
<td>- Restricted parking</td>
</tr>
<tr>
<td>- Road Diet</td>
<td>- Buffer zone</td>
<td>- Real-time information</td>
<td>- Multi-use path</td>
<td>- Manufactured system</td>
<td>- Idle engine restrictions</td>
</tr>
<tr>
<td>- Lane Diet</td>
<td>- "goat paths" to real paths</td>
<td>- Smart-pay systems</td>
<td>- Bike Signals</td>
<td>- Use landscaping as buffer</td>
<td></td>
</tr>
<tr>
<td>- Traffic Calming</td>
<td>- Winter maintenance</td>
<td>ADA access</td>
<td>- Painted Bike boxes</td>
<td>for pedestrian and bicycle realm</td>
<td></td>
</tr>
<tr>
<td>- Street lighting</td>
<td>- Mid block crossings</td>
<td>Transit pull-outs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Refuge island</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Complete Streets Typology for Communities in Cuyahoga County
Large Boulevard

Suggested Design Elements for Large Boulevard

<table>
<thead>
<tr>
<th>Right of Way Considerations (Section 4.1)</th>
<th>Pedestrian Facilities (Section 4.2)</th>
<th>Transit Facilities (Section 4.3)</th>
<th>Bicycle Facilities (Section 4.4)</th>
<th>Landscaping and Storm water (Section 4.5)</th>
<th>Parking Management (Section 4.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Speed reduction</td>
<td>- Sidewalks</td>
<td>- Furniture at stops</td>
<td>- Floating bike lanes</td>
<td>- Bioretention cells</td>
<td>- Time restrictions</td>
</tr>
<tr>
<td>- Traffic calming</td>
<td>- Sidewalk furniture</td>
<td>- Real-time information</td>
<td>- Bike route signage</td>
<td>- Permeable pavers</td>
<td>- Weather restrictions</td>
</tr>
<tr>
<td></td>
<td>- Pedestrian signals</td>
<td>- Smart-pay systems</td>
<td>- Multi-use path</td>
<td>- Tree boxes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chicanes</td>
<td>- Transit pull-outs</td>
<td>- Cycle track</td>
<td>- Furniture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Winter maintenance</td>
<td></td>
<td>- Bike Signals</td>
<td>- Vegetated biofilter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Signalized crosswalks</td>
<td></td>
<td>- Painted Bike boxes</td>
<td>- Green parking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Refuge island</td>
<td></td>
<td></td>
<td>- Vegetated Roofs</td>
<td></td>
</tr>
</tbody>
</table>

- Speed reduction
- Traffic calming
- Sidewalks
- Sidewalk furniture
- Pedestrian signals
- Chicanes
- Winter maintenance
- Signalized crosswalks
- Refuge island
- Furniture at stops
- Real-time information
- Smart-pay systems
- Transit pull-outs
- Floating bike lanes
- Bike route signage
- Multi-use path
- Cycle track
- Bike Signals
- Painted Bike boxes
- Bioretention cells
- Permeable pavers
- Tree boxes
- Furniture
- Vegetated biofilter
- Green parking
- Vegetated Roofs
- Time restrictions
- Weather restrictions
Small Transit Spine

Suggested Design Elements for Small Transit Spine

<table>
<thead>
<tr>
<th>Right of Way Considerations (Section 4.1)</th>
<th>Pedestrian Facilities (Section 4.2)</th>
<th>Transit Facilities (Section 4.3)</th>
<th>Bicycle Facilities (Section 4.4)</th>
<th>Landscaping and Storm water (Section 4.5)</th>
<th>Parking Management (Section 4.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Alternate routes
- Traffic Calming</td>
<td>- Sidewalks
- Signalized Crosswalks
- Pedestrian signals
- Chicanes
- Scramble Phase
- Winter maintenance
- Mid block crossings
- Refuge island</td>
<td>- Frequency of bus stops
- Alternate routes
- Real-time information
- Smart-pay systems
- Bus/ train priority signalization
- Protected bus way</td>
<td>- Bike Lanes
- Contra-flow Bike Lanes
- Two-way bike lanes
- Bike Boxes
- Cycle Track
- Bike signals</td>
<td>- Bioretention cells
- Vegetated biofilter
- Permeable pavers
- Tree boxes
- Furniture
- Vegetated roof</td>
<td>- No parking
- Alternate access locations</td>
</tr>
</tbody>
</table>
Very Small Neighborhood Connector

Suggested Design Elements for Very Small Neighborhood Connector

<table>
<thead>
<tr>
<th>Right of Way Considerations (Section 4.1)</th>
<th>Pedestrian Facilities (Section 4.2)</th>
<th>Transit Facilities (Section 4.3)</th>
<th>Bicycle Facilities (Section 4.4)</th>
<th>Landscaping and Storm water (Section 4.5)</th>
<th>Parking Management (Section 4.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Visibility (absence of obstructions and proper lighting)</td>
<td>- Sidewalks</td>
<td>- Limited transit</td>
<td>- Bike route signage</td>
<td>- Street trees</td>
<td>- Restricted parking</td>
</tr>
<tr>
<td>- Restricted access</td>
<td></td>
<td></td>
<td>- Bike parking (at recreation sites)</td>
<td>- Vegetated biofilter</td>
<td></td>
</tr>
<tr>
<td>- Speed reduction</td>
<td></td>
<td></td>
<td></td>
<td>- Rain gardens</td>
<td></td>
</tr>
</tbody>
</table>
5. Design Elements

- Right of Way
- Pedestrian Facilities
- Transit Facilities
- Bicycle Facilities
- Water Management
Right of Way Considerations

Road Diet vs. Lane Diet

1. Road Diet
A road diet is a reduction in overall roadway width.

2. Lane Diet
A lane diet is a reduction in travel lane width.

Source: Boston Complete Streets Guidelines

Traffic Calming
Pedestrian Facilities

Midblock Signalized Crosswalk

Refuge Islands

Cleveland Heights, Lee Rd Library

Cambridge, MA
Transit Facilities

Shelters and Information

Protected Bus Way

Cleveland Heights

Cleveland
Bicycle Facilities

Buffered Bike Lane
- Cleveland Heights, Edgehill

Bike Boulevard
- City of Columbus

Bicycle Parking
- City of Columbus

Multi-use Lane
- Parma Heights

Protected Track
- New York City

Traffic Lights
- New York City
Storm Water Management

Vegetated Biofilter

Permeable Pavement

City of Columbus
6. Steps to Implementation

1. Collaborating
2. Adopting a policy
3. Changing procedures
4. Applying for funding
5. Measuring performance
Collaborating

Engineering/Public Works Departments

City Council

Mayor

Planning, Community and Building Department

Chief of Police

Health

Schools

Economic Development

Parks

Fire
Developing and Adopting a Policy

Resources:

Complete Streets local policy workbook
provided by National Complete Streets Coalition. (2012, August).

The Best Complete Streets Policies of 2012
provided by National Complete Streets Coalition. (2013, April).

Model Policies provided in Complete Streets Toolkit

For an overview of adopted policies throughout **the U.S. the National Complete Streets Coalition** provides the following policy atlas:
http://www.smartgrowthamerica.org/complete-streets/changing-policy/complete-streets-atlas
Developing and Adopting a Policy

<table>
<thead>
<tr>
<th>POLICY TYPE</th>
<th>BRIEF DESCRIPTION</th>
</tr>
</thead>
</table>
| Legislative | • Legally requires the needs of all users be addressed in transportation projects
• Changes to the city code, rules and regulations through the creation of complete streets ordinances |
| Resolution | • Resolutions are non-binding, official statements of support. |
| Plan | • Master Plans, TLCI Studies, Safe-Routes to School Plans, Utility and Sewer Plans, Bicycle and Pedestrian Plans |
| Tax Levy | • Some communities have decided to pursue an additional tax that will fund transportation improvements. |

Table modified from the one found in *The Complete Streets Local Policy Workbook*, published by Smart Growth America and National Complete Streets Coalition.
Developing and Adopting a Policy

| Background | • Reason for adoption
| | • such as health, safety, or providing transportation choice |
| Definition | • ALL USERS and MODES; SAFE and COMFORTABLE
	• Storm water and environmental benefits
Vision	• A strong vision can inspire a community to follow through on its Complete Streets policy, e.g. equitable, balanced, and effective transportation system throughout the community
Policy statement	• Explain how policy will address Complete Streets needs in scoping, planning, design, construction, operations, and maintenance?
Exemption	• Determine exceptions during the writing process can reassure those who are doubtful about the policy, but if they are too broad they can make the policy meaningless.
Performance standard	• Define measurements of success, e.g. miles of on-street and off-street bicycle routes created, percentage of children walking or biking to school
Implementation	• SAMPLE: “Our Community will carry out these key steps in the following ways: [...=”
Changing Procedures

Things to consider in the implementation section of the policy

<table>
<thead>
<tr>
<th>ROAD PROJECTS (Public Works/ Engineering Departments and Police)</th>
<th>Criteria for selecting and prioritizing road maintenance projects</th>
<th>Paving plans</th>
<th>Project development process</th>
<th>Checklists for design elements</th>
<th>Relaxed level of service</th>
<th>Signal timing adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN GUIDES</td>
<td>Design guides for specific district</td>
<td>Adopt internal design standards</td>
<td>Streetscape design review team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RULES/ CODES/ PROCEDURES</td>
<td>Storm-water run-off standards</td>
<td>Sidewalk maintenance</td>
<td>Bicycle parking regulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAW ENFORCEMENT</td>
<td>Speed violations</td>
<td>Passing distance for bicyclists</td>
<td>Education opportunities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transferability/What now?
Lessons learned: Developing a toolkit

• From county perspective
 ▫ Builds organizational capacity for infrastructure planning
 ▫ Provides starting point for conversation with interested communities
 ▫ Establishes inter-departmental collaboration
 ▫ Begins a regional identity for transportation network

• From a city’s perspective:
 ▫ Provides an advanced starting point for building complete streets, adopting policies, or changing procedures
 ▫ Opens door for conversations about complete streets
 ▫ Not “on an island”; strength in numbers with neighboring communities
Lessons learned: Developing a toolkit

• Suggestions:
 ▫ It is more than bike lanes!
 ▫ Every street is unique, but seek the typology based on land use, existing right-of-way and function
 ▫ Find, consult and use the best practices
 ▫ Leverage the funding: roadway, amenities, streetscape, stormwater, transit and others
 ▫ Build a network – all about connectivity
 ▫ Sell the benefits of complete streets first
Questions and Answers

Jennifer Scofield, MA, CHES
Interim Director of Regional Collaboration
Office of Cuyahoga County Executive Ed FitzGerald
jscofield@cuyahogacounty.us
216-698-3022

Glenn Coyne, FAICP
Executive Director
Cuyahoga County Planning Commission
gcoyne@cuyahogacounty.us
216-443-3700
Project Team Complete Streets Toolkit:

Office of County Executive Ed FitzGerald: Jennifer Scofield

Cuyahoga County Planning Commission: Glenn Coyne (Executive Director), Deborah Riemann (project coordinator), Kristin Hopkins, Alison Ball, Meghan Chaney, Michael Melko, Claire Kilbane, Dan Meaney, Robin Watkins

Cuyahoga County Department of Public Works: Bonnie Teeuwen (Director of Public Works), Gayle Lewin (project coordinator), Stan Kosilesky, David Marquard

Technical Assistance: Jacob VanSickle (Bike Cleveland), Smart Growth America